Infrared and Raman Spectra of LiNH₃OHSO₄ and (NH₃OH)₂SO₄ Single Crystals and Their Deuterated Analogs

V. P. Mahadevan Pillai* and V. U. Nayar^{†,1}

*Department of Physics, St. Gregorious College, Kottarakara 691531, Kerala, India; and †Department of Optoelectronics, University of Kerala, Kariavattom, Trivandrum 695581, Kerala, India

Received April 1, 1996; in revised form August 13, 1996; accepted August 14, 1996

Infrared and Raman spectra of LiNH₃OHSO₄ and (NH₃OH)₂SO₄ single crystals and their deuterated analogs are recorded and analyzed. Bands are assigned on the basis of SO₄²⁻, NH₃, and OH vibrations. The appearance of the ν_1 mode in the B_g species contributing to α_{xz} , α_{yz} , and α_{xy} polarizability tensor components, the higher wavenumber values of the ν_1 mode, the observation of the inactive ν_1 and ν_2 modes in the infrared spectrum, and the lifting of degeneracies of the ν_2 , ν_3 , and ν_4 modes suggest that the SO₄ tetrahedron in LiNH₃OHSO₄ is distorted confirming the X-ray data. The large splitting observed for the ν_1 mode in (NH₃OH)₂SO₄ and its decrease on deuteration indicate that the SO₄ tetrahedron is more distorted in it. Strong hydrogen bonds are formed between the H atoms of the NH₃ and OH groups with the oxygen atoms of the SO₄ group in both the crystals. The presence of two bands for the nondegenerate symmetric bending mode (ν_2), the broadness of the stretching modes ν_1 and ν_3 of NH₃, and the appearance of two NH₃ torsional bands at 90 K suggest the existence of two distinct HONH⁺₃ sites in the (NH₃OH)₂SO₄ crystal confirming the inelastic neutron scattering data. The two NH₃ torsional modes observed at 90 K suggest that hydrogen bonds formed by NH₃ protons become more pronounced at low temperature. In LiNH₃OHSO₄ only one NH₃ torsional mode is obtained and this indicates that NH₃OH⁺ sites in it are identical. ABC bands are observed in the OH stretching region in both of the crystals confirming the presence of strong hydrogen bonds. © 1996 Academic Press, Inc.

INTRODUCTION

LiNH₃OHSO₄ crystallizes in the orthorhombic system with space group *Pbca* and has eight formula units per unit cell (1). It has a structure which is quite different from the stuffed tetrahedral framework structures of the isoelectronic Li(N₂H₅)SO₄ and Li(N₂H₅)BeF₄ or the other compounds of the forms LiMSO₄ and LiMBeF₄ (M = K, Rb, Cs, and NH₄). LiNH₃OHSO₄ contains sheets of LiSO₄, hydrogen bonded together by the NH₃OH⁺ ions. The Li atom is surrounded by four oxygen atoms at 1.96 Å and S by four oxygen atoms at 1.477 Å.

 $(NH_3OH)_2SO_4$ crystallizes in the monoclinic system with space group $P2_1/c$ having four molecular units per unit cell (2). Detailed structure of this compound with bond lengths and bond angles is not available. There are only a few reports of the vibrational analysis of the compounds containing NH_3OH^+ ions (3–5). A detailed analysis of the vibrational spectra of $(NH_3OH)_2SO_4$, $(ND_3OD)_2SO_4$, $LiNH_3OHSO_4$, and $LiND_3ODSO_4$ has been carried out to obtain more information about the internal structure of these compounds and the nature of hydrogen bonding.

EXPERIMENTAL

Single crystals of LiNH₃OHSO₄ (abbreviated as LNHS) were prepared by the slow evaporation of the aqueous solution containing stoichiometric quantities of $(NH_3OH)_2SO_4$ and Li₂SO₄ at room temperature $(300 \pm 3$ K). Single crystals of $(NH_3OH)_2SO_4$ (abbreviated as NHS) were prepared by the slow evaporation of the aqueous solution of commercially available $(NH_3OH)_2SO_4$ (BDH, AR grade) at room temperature. The deuterated analogs of these compounds were prepared by dissolving them in heavy water (99.99% pure) and evaporating the solution under a vacuum desiccator. The process was repeated several times to enhance the percentage of deuteration.

Well grown single crystals of LNHS and NHS were chosen and crystallographic axes were determined using a polarizing microscope. The sides x, y, and z of the crystals were chosen in accordance with crystallographic a, b, and c axes. The sides of the crystals were cut, finely polished, and properly aligned on the goniometer to record the Raman spectra in the 90° scattering geometry. The polarized Raman spectra of LNHS (Figs. 1–3) were recorded on six crystal orientations, viz., y(xx)z, x(yy)z, x(zz)y, y(xy)z, and y(zy)z. Polarized Raman spectra (Figs. 4 and 5) of NHS were recorded on four crystal geometries, viz., z(yy)x, z(xz)x, z(yz)x, and z(xy)z. Raman spectra of the polycrystalline samples of LiNH₃OHSO₄, LiND₃ODSO₄,

¹ To whom correspondence should be addressed.

FIG. 1. Raman spectra of LiNH₃OHSO₄ in the 50–850 cm⁻¹ region for y(xx)z, x(yy)z, x(zz)y, y(zy)z, y(xy)z, and x(zx)y orientations.

 $(NH_3OH)_2SO_4$, and $(ND_3OD)_2SO_4$ were also recorded by taking the samples in capillary tubes. A 1401 Spex Raman spectrometer equipped with a Spectra Physics model 165.08 Ar⁺ laser was used for recording Raman spectra. The spectra were recorded using 514.5 nm exciting radiation at a resolution better than 3 cm⁻¹. The Raman spectra of LNHS and NHS single crystals were recorded in the back scattering geometry, $x(z \ z + y)x$ and $x(y \ y + z)x$ geometries, respectively, at 300 and 90 K, using a Coherent Innova 300 krypton ion laser (exciting radiation 476.2 nm) and Raman spectra of NHS on a Dilor Z24 Raman spectrometer. The FTIR/IR spectra of LNHS, LNDS, NHS, and a partially deuterated (ND₃OD)₂SO₄ (abbreviated NDS) were recorded on a Bruker IFS-66V-FTIR spectrometer/Perkin-Elmer 882 spectrophotometer as polyethylene pellets and KBr pellets. Raman spectra are redrawn conforming to the original spectra obtained for the crystals and are given in Figs. 1-5.

FACTOR GROUP ANALYSIS

Li, NH₃OH⁺, and SO₄²⁻ ions in LNHS and NH₃OH⁺ and SO₄²⁻ ions in NHS occupy the general site C_1 in the respective crystals. Factor group analysis of the compounds has been carried out using the correlation method developed by Fateley *et al.* (6) (see Tables 1 and 2). The 285 irreducible representations obtained for LNHS excluding acoustic modes at k = 0 are distributed as

FIG. 2. Raman spectra of LiNH₃OHSO₄ in the 950–1650 cm⁻¹ region for y(xx)z, x(yy)z, x(zz)y, y(zy)z, y(xy)z, and x(zx)y orientations.

$$\Gamma_{\text{LNHS}} = 36A_g + 36B_{1g} + 36B_{2g} + 36B_{3g} + 36A_u + 35B_{1u} + 35B_{2u} + 35B_{3u}.$$

For NHS, 201 optical modes (at k = 0) are obtained. They are distributed as

$$\Gamma_{\rm NHS} = 51A_g + 51B_g + 50A_u + 49B_u.$$

FIG. 3. Raman spectra of LiNH₃OHSO₄ in the 1700–3150 cm⁻¹ region for y(xx)z, x(yy)z, x(zz)y, y(zy)z, y(xy)z, and x(zx)y orientations.

FIG. 4. Raman spectra of $(NH_3OH)_2SO_4$ in the 50–1050 cm⁻¹ region for z(xz)x, z(xy)x, z(yz)x, and z(yy)x orientations.

RESULTS AND DISCUSSION

SO_4^{2-} Vibrations

A free SO₄⁻ ion under T_d symmetry has four fundamental vibrations, viz., the nondegenerate symmetric stretching mode $\nu_1(A_1)$, the doubly degenerate bending mode $\nu_2(E)$, the triply degenerate asymmetric stretching mode $\nu_3(F_2)$, and triply degenerate asymmetric bending mode $\nu_4(F_2)$. All the modes are Raman active, whereas only ν_3 and ν_4 are active in the IR.

LiNH₃OHSO₄ and LiND₃ODSO₄

The nondegenerate stretching mode of $SO_4^{2-}(\nu_1)$ splits into two in the Raman spectra in all the crystal orientations and in the back scattered spectrum for LNHS (Table 3). In y(xx)z and x(zz)y polarizations, two intense bands at 996 and 1011 cm⁻¹ are obtained. In all other crystal orientations, these bands have only medium intensity. In y(xx)zand y(xz)x orientations, the band at 996 cm⁻¹ shows more intensity than the band at 1011 cm⁻¹. However, in all other orientations, the band at 1011 cm⁻¹ is more intense than the other band. In the back scattered Raman spectrum, two very intense bands are observed at 996 and 1010 cm⁻¹, with the band at 1010 cm⁻¹ showing enhanced intensity. In the FTIR spectrum, an intense band is observed at 1001 cm⁻¹ for this vibration. In the deuterated compound LNDS, two very intense bands are observed at 999 and 1009 cm⁻¹ in the Raman spectrum and two weak bands at 980 and 1000 cm⁻¹ in the IR spectrum.

The asymmetric stretching mode ν_3 of SO_4^{2-} is observed with degeneracy lifted in the Raman spectra in all the crystal orientations and in the back scattered spectrum (Table 3). In the FTIR spectrum, a very intense band is observed at 1132 cm⁻¹ for this mode. In the deuterated compound, degeneracy is lifted in both the IR and Raman spectra.

The ν_2 mode of SO₄⁻ appears with degeneracy lifted in the Raman spectra in all the crystal orientations. However, in the back scattered Raman spectrum and in the FTIR spectrum only a single band is observed. The asymmetric bending mode ν_4 also appears with degeneracy lifted in the Raman spectra, whereas it is partially retained in the FTIR spectrum.

Under T_d symmetry, the ν_1 mode has polarizability components α_{xx} , α_{yy} , and α_{zz} and it is expected to appear in the A_g orientations without any distortion of the SO₄ tetrahedra. This mode is also observed in B_{1g} , B_{2g} , and B_{3g} orientations with considerable intensity. Since the SO₄²⁻ ion occupies a site C_1 , it can be seen from the correlation table that this mode can be active in the B_{1g} , B_{2g} , and B_{3g} species, due to the distortion of SO₄ tetrahedra from T_d

FIG. 5. Raman spectra of $(NH_3OH)_2SO_4$ in the 1050–3150 cm⁻¹ region for z(xz)x, z(xy)x, z(yz)x, and z(yy)x orientations.

to C_1 , contributing to α_{xz} , α_{yz} , and α_{xy} polarizability tensor components (7). Higher wavenumber values obtained for the nondegenerate stretching mode ν_1 than those in a free SO_4^{2-} ion (8) also confirms the distortion of SO_4 tetrahedra as is evident from different S-O bond lengths determined from the X-ray diffraction studies (1, 9). Distortion of the SO_4^{2-} ion and the fact that there are eight molecular units in the Bravais cell leads to a splitting of the ν_1 mode and additional splitting, apart from the lifting of degeneracies of the ν_2 , ν_3 , and ν_4 modes. X-ray data show that H atoms of the NH₃ group and OH group form strong hydrogen bonds with the oxygen atoms of the SO4 group with the N-H ··· O distance ranging from 2.799 to 3.066 Å and the O–H \cdots O distance 2.65 Å. The presence of these hydrogen bonds may be the reason for the observed distortion in the SO₄ tetrahedra in LNHS. Deuteration does not affect the SO₄²⁻ vibrations.

$(NH_3OH)_2SO_4$ and $(ND_3OD)_2SO_4$

The nondegenerate symmetric stretching mode of the SO_4^{2-} ion exhibits larger splitting in both the FTIR and Raman spectra of NHS. Three very intense bands around 981, 1005, and 1021 cm⁻¹ are obtained for this mode in z(yy)x polarization of the Raman spectra of the crystal and in the powder spectrum (Table 4). Intensity of these bands alternates in the other polarizations. In the FTIR spectrum, only two intense bands at 978 and 1012 cm⁻¹ are obtained but at 984, 992, and 1002 cm⁻¹ in the Raman spectrum. In the FTIR spectrum of NDS, two intense bands

are observed at 977 and 995 cm⁻¹ for this mode. In NHS, the ν_1 mode has a frequency spread of 40 cm⁻¹ in Raman and 34 cm⁻¹ in the IR, while in NDS, this is only 18 cm⁻¹ in both the spectra. This large splitting observed for the ν_1 mode in NHS and its decrease in NDS indicate that the SO₄ tetrahedron is distorted in NHS. Hydrogen atoms of NH₃ and OH groups form hydrogen bonds in the NHS crystal. Deuteration of the compound causes a reduction of the hydrogen bond strength, leading to a decrease in the spread of the splitting of this mode.

The degeneracies of the ν_2 , ν_3 , and ν_4 modes are lifted in the Raman spectra of the NHS crystal and of the dueterated compounds (Table 4). This can be expected from the lowering of the symmetry of the SO₄⁻ ion from T_d to C_1 . The appearance of the ν_1 mode in the B_g species also confirms the distortion of the SO₄ tetrahedra (7). The observed large splitting of the ν_1 mode in NHS compared to LNHS suggests that the SO₄⁻ ion is more distorted in NHS.

NH₃OH⁺ Vibrations

NH₃OH⁺ vibrations consist of NH₃ and OH vibrations. NH₃ in the free state has $C_{3\nu}$ symmetry and it has four fundamental vibrations, all being both Raman and IR active. The symmetric $[\nu_1(A_1)]$ and asymmetric $[\nu_3(E)]$ N–H stretching modes appear with weak intensity in the Raman spectra of all the compounds. In the FTIR spectrum of NHS, a very intense broad band is observed around 2955 cm⁻¹ for both the stretching modes. Deuteration of this compound is only partial (about 70%) as seen from the stretching bands of ND₃ in NDS. These modes shift to

TABLE 1 Correlation of the Internal Vibrational Modes of SO_4^{2-} and NH_3 in LiNH₃OHSO₄

2267 cm⁻¹ with shoulders at 2150 and 2375 cm⁻¹ in the FTIR spectrum of the deuterated compound. In the Raman spectrum, they exhibit weak bands at 2155 and 2260 cm⁻¹. In the FTIR spectrum of LNHS, these modes obtained as an intense broad band around 2930 cm⁻¹ are observed as two bands at 2285 and 2318 cm⁻¹.

The Raman bands appearing in the 1500–1650 cm⁻¹ region in both NHS and LNHS are assigned to the bending modes ν_2 and ν_4 of NH₃. One intense band each is observed for ν_2 and ν_4 modes in the IR spectra for both LNHS and its deuterated analog. But in NHS, the nondegenerate ν_2 (NH₃) mode splits into two bands of equal intensity in both FTIR and Raman spectra while the degeneracy of the ν_4 mode is lifted in all the Raman orientations and in the FTIR spectrum.

From a study of the inelastic neutron scattering spectra, Jayasooriya *et al.* (5) predicted the existence of at least two distinct HONH⁺₃ sites in the NHS crystal from two NH₃ torsional vibrations about the N–O axis. They have also obtained two IR NH₃ torsional modes at liquid nitrogen temperature. In the present study, the band at 416 cm⁻¹ observed in the FTIR spectrum at room temperature is assigned to this mode as it disappears on deuteration. Weak bands are also observed in this region in the z(yy)x, z(xz)x, and z(xy)x polarizations of the Raman spectra. Even though only one band is observed at room temperature for the torsional mode, the appearance of two bands in ν_2 NH₃ mode region and the broadness of the ν_1 and ν_3 stretching modes can be considered as a confirmation of the existence of two distinct HONH⁺₃ sites in the NHS crystal. Two bands are also obtained in NDS for the ν_2 mode with a higher wavenumber band at 1427 cm⁻¹ having a higher intensity than the other (1387 cm⁻¹).

The N-H stretching frequencies ν_1 and ν_3 appear at lower wavenumbers than those in a free NH₃ group (8, 10) indicating that strong hydrogen bonds are formed by the H atom of the NH₃ group with the oxygen atoms of the SO₄²⁻ anion in both LNHS and NHS crystals. This is consistent with the X-ray structural data of N-H ··· O distances of 2.799–3.066 Å obtained for LNHS (1).

Two weak bands are observed at 2000 and 2059 cm⁻¹ in the FTIR spectra of NHS. They are assigned to combination bands of the NH₃ deformations (1614 cm⁻¹) and NH₃ torsional modes (380 and 430 cm⁻¹). Similar combination bands have been observed earlier in N₂H₆SO₄ crystals (11). In LNHS, only one band around 1950 cm⁻¹ is obtained in this region.

The positive isotope effect implies a weakening of the hydrogen bonds on deuteration (12, 13). The isotopic frequency ratios observed for the N–H stretching modes for NHS and LNHS are about 1.289 and 1.267, respectively. For the bending modes, these ratios have values of 1.10156 and 1.1868, respectively. For a free molecule, this ratio is about 1.355. This value decreases as the strength of the hydrogen bond increases. Therefore, the lower values obtained for this ratio also indicate the presence of strong hydrogen bonds in LiNH₃OHSO₄ and (NH₃OH)₂SO₄.

TABLE 2Correlation of the Internal Vibrational Modes of SO_4^{2-} and NH_3 in $(NH_3OH)_2SO_4$

IR AND RAMAN SPECTRA OF LiNH₃OHSO₄ AND (NH₃OH)₂SO₄

TABLE 3 Spectral Data (cm $^{-1}$) and Band Assignments for LiNH $_3OHSO_4$ and LiND $_3ODSO_4$

				LiNH ₃	OHSO ₄								
						Raman							
								Back	scattered	LiND ₃ ODSO ₄		_	
IR	FTIR	y(xx)z	x(yy)z	x(zz)y	x(zx)y	y(xy)z	y(zy)z	300 K	90 K	Raman	IR	Assignments	
1	2	3	4	5	6	7	8	9	10	11	12	13	
	63vw					56w	70w						
	87vs	77w	79w	100	88w	81m	81w	117	94w	80w		SO ₄ translation	
	102w 131m		131W	120w	121W	101vw 121w	101vw 121w	116w	115W	130w		$\delta(\Omega \cdots \Omega)$	
	141vw			141w		146vw	141vw	145w	148w	140w		0(0 0)	
									167vw			SO ₄ libration	
	150w	159w 170ww	165vw	161vw	161vw	166vw	161vw 176vw	220mbr	207vw 226vw	174vw 221w		NH OH translation	
	10911 198s	201w	201w				190vw	250w01	220VW	221 w		NH ₃ OH translation	
	240sh	246w	246w	251w	250w	241vw	226vw	245vwbr	248vw				
		255vw	259w	266w			261w						
	286sbr	285w	290w		285vw	285w		290w		240w		$\nu(O \cdots O)$	
	33378		365w		323W	361vw	360vwbr		365w			Li ⁺ translation	
390w	388vs		390w	386w	390w	391vw	381vw			380w	408w	Li-O stretch	
	422vs	434vw	425vw	425vw	415vw	415vw			430m			NH ₃ torsion	
440w	17.1	463wbr	440w	445w	456w	449w	441vw	450m	452m	444m	468m		
4/2m	4/4vs	481W	455W	454m 481w	481W	456w 486vw	451W 481w		486m	450m 461vw	482W	$\nu_2 8 O_4$	
				1011		100111	10111			476w			
520vw		505w	491w			505vw			503vw		519w	Li-N stretch	
621s	600sh	585vw	(15	591vw	(15	(15	(15	(10 1	(17	610sh	(10		
	639vs	615VW	615vw	601vw	615vw 638w	615vw	615vw	618mbr 635w	61/m 638w	625w	618s 642sh	$\nu_4 SO_4$	
		651w	04111	651wbr	651w	646wbr	0551	648m	647wbr	651w	042511		
752w	800sh		820w							674w		γ(OH) NH ₂ /ND ₂ rock	
										890w		250	
										917vw		$2\nu_2 3 0_4$	
995m	1001s	996s	996m	996s	996m	998m	997m	996vs	997s	996vs	980w	$\nu_1 SO_4$	
		1011s 1030vw	1010s	1011s 1030w	1011m 1030w	1010m 1030w	1011m 1031vw	1010vs 1038vw	1011vvs	1009vs 774vw	1000w	N_OH/N_OD stretch	
1083w		1061w	1061w	1066w	1046w	1056w	1068w	1083sh	1087m	1052vw	1050m	N OHN OD SICKI	
1087vs		1086w	1086vw	1103m	1066w	1091w	1091vw	1102s	1102s	1065vw	1092vs	ν_{3} 80 ₄	
1121vs	1132vsbr	1111w	1106w	1113w	1101w	1101w	1106vw	1138w	1143m	1117vw	1127vs		
		1145VW	1116vw 1156w	1140w 1156w	1143W			1153W	115/m 1177w	1141vw 1151vw	1162s		
1245mbr		1210vw	1220w	1210w		1206vw		1214w	1218mbr	922vw	923m	2011/01	
										960vw	1032m	δOH/OD	
1405vw		1375w										~	
		1405w 1440w	1430vw			1425vw	1430vw 1455w					Combinations	
15258	1506s	1540w	1556vw	1545w	1551w	1516vw	1455W	1516w	1521vw	1193m	1232m		
1565s		1561w	1581w	1566w	1571w	1526vw		1535vw	1534vw	1275w		$\nu_2 NH_3/ND_3$	
		1580w				1548w							
1640s	1614s	1605vw	1600w	1616w	1611w 1640w	1600w 1626w	1625vw	1618mbr	1615w 1624m	1376w	1360w	"NH /ND	
		1000w			1040w	1626w 1676vw	1055vw		102411	1450w	1422W	$\nu_4 (N H_3 / (N D_3))$	
	1760w	1746w								1615vw	2165w		
		1870w				1711w				1660vw		Combinations	
1025	1050	2125vw	2140w			1760vw						NUL territe NUL	
1935wbr	1950w	1945w	1930W									MH ₃ torsion–NH ₃ deformation	
2230vw 2725m	2365W 2697vs	2330w 2730wbr	2340vw 2740w							2060w	1750w 2060w	$\nu(OH)$ A & B bands	
272311	209743	2750001	27400						2804w	2000₩	2000w		
									2832m			Combinations	
									2859m				
2920m	2930sbr	2945w 2085w	2005.0	2960w 2005w	2970w 2020w	2890w 2005w	2860w 2015ww	2916w 2064w	2872w 2000w	2176w 2260s	2285s		
50508		3020w	2993w 3030w	2993w 3020w	3020w	2903w 2930vw	2915vw 2935vw	3010w	2900w 2935s	2260s 2360sbr	2318m 2390m	v1 & v3 NH3/ND3	
		3035w		3052w	3050w	2945w	2950vw	3050w	2954w	2990vw	2941vw		
		3050vw		3130w	3110w	2990w	3000vw		3012w	3014vw	3055vw		
		3100vw			3140vw	3030w	3030vw		3086w				
3140vw						3140w			3152w			Combinations	
									3259w				

Note. vs, very strong; s, strong; m, medium; vw, very weak; w, weak; br, broad; sh, shoulder.

PILLAI AND NAYAR

 TABLE 4

 Spectral Data (cm⁻¹) and Band Assignments

			$(NH_3OH)_2S$	SO_4							
		R	aman								
				Back scattered			(ND ₃ OD) ₂ SO ₄				
z(yy)x	z(xz)x	z(yz)x	z(xy)x	300 K	90 K	FTIR	FTIR	Raman	Assignments		
1	2	3	4	5	6	7	8	9	10		
72w	72m 92w 100w	72w 98w	74m 96mbr	80w 95vw 107vw	69m 84w 96w	87vs	60vw 69vw 87w	85w	SO ₄ translation		
124w 150m	120vw 130m 152m	120vw 135w 150w	120vw 130vw 145vw	139w 158m	111vw 135m 160w	125s 150mbr	125sh	126m 150w	SO_4 libration $\delta(O \cdots O)?$		
175vw	165sh 175vw	160w 192w	170vw	175m	177m 192vw	190vsbr	190sh	195w	SO ₄ libration		
200vwbr 215w	215vw 250w	205mbr 250w	200wbr 255vw	212mbr 259w	204m 217m 223vw 259vw	230vs	218vs 265sh		NH ₃ OH translation		
410w	285w 420w	286w 300w	270vw	288w	289m 306w 380m	290sh		274w 295vw	$\nu(O \cdots O)$		
4100	420 0		455.1		424m	417vs	160	176	NH ₃ torsion		
460w 475m	458m 475w	455m 475m	455sh 478s	454m 475m	460m 473m	459m 471m	468s	456m 478m	$\nu_2 SO_4$		
595w	605w	610w	610vw	603w	601w	603vs	610vs	620w			
620sh 637m	625m 640vw	630w 641w	630w 638vw	626m 638sh	619m 627m 637m	615vs 627vs	635vs	643w	$\nu_4 \mathrm{SO}_4$		
655vw					656vw	831s	650sh 835w	665vw	OH torsion γOH/OD		
880vw	835w 880w	880vw		842w	850m		055 W		NH ₃ rocking		
981vs	981s	983m	981s	979vs	978vs	978s	977s	984vs			
1005vs 1021vs 1070w	1003m 1021s 1070m	1004m 1020s 1070w	1004vs 1021s 1070vw	1002s 1017vs 1067w	999s 1017vs 1067m	1012s 1066vs	995s 1097vsbr	992vs 1002vs 1075wbr	$\nu_1 \mathrm{SO}_4$		
1090w 1122vw 1160vw	1090w 1110vw 1120w	1089vw 1122m 1185w	1085w 1094w 1120w	1084w 1115w	1086m 1102w 1121m	1120sn	1183sn	1110w 1170w	$\nu_3 SO_4$		
1215w	1150w 1215w	1215w	1160vw 1210wbr	1208wbr	1217mbr	1215s	892m 931m	950w	δ N–OH/N–OD		
1550m 1560w	1560vw	1505w 1550w	1520w 1550m	1506vw 1550w	1508w 1552w	1523s 1558s	1387m 1427m 1529m 1557m	1265vw 1330m	$\nu_2 NH_3/ND_3$		
1594w	1610w	1610wbr	1590vw	1608w	1583vw	1616s	1467m	1350w			
1608m 1700vw	1635vw		1610w 1625vw 1713vw		1614m	1654sh	1616w	1390w	$\nu_4 NH_3/ND_3$		
			1715VW			2000w 2059w	1874vw		NH_3 deformation + NH_3 torsion		

					SO_4	$(NH_3OH)_2$			
						laman	F		
	$(ND_3OD)_2SO_4$			cattered	Back s				
Assignments	Raman	FTIR	FTIR	90 K	300 K	z(xy)x	z(yz)x	z(xz)x	z(yy)x
10	9	8	7	6	5	4	3	2	1
Combinations			2100w 2230w 1684sh						
ν (OH) ABC bands		1765w 2055w 2793m	2400sh 2739vs	2710vw 2750vw	2737wbr				
$\nu_1 \mathrm{NH}_3/\mathrm{ND}_3$	2115w 2145w 2155w	2150sh 2887s	2955vs	2911vw 2928w	2963m	2990w	2990w	2975w 2990w	960w 980w
<i>v</i> ₃ NH ₃ /ND ₃	2260w	2267vs 2375sh		3019w 3032w 3063vw 3129w	3011m 3122m 3200w	3015vw 3040vw 3120vw	3120vw	3030w 3080w 3120vw	999w

TABLE 4—Continued

Three fundamental vibrations connected with the hydrogen bonded OH groups are ν (OH) stretching and inplane δ (OH) and out-of-plane γ (OH) bending vibrations. In a strongly hydrogen bonded system, the ν OH band is usually very broad due to strong interactions between the proton vibrations and the $\nu(O \cdots O)$ vibrations (14, 15). Due to Fermi resonance, the overtones of the δOH and γOH modes interact with the broad ν OH band leading to the appearance of three bands A, B, and C in the ν OH stretching region (16). In LiNH₃OHSO₄, strong hydrogen bonds are present between H atoms of the OH group of the NH₃OH⁺ ion and O atoms of the SO₄ groups with O · · · O distances of around 2.65 Å. In NH₄HSeO₄, A, B, and C bands are obtained at 2655, 2290, and 1610 cm^{-1} , respectively, where the $(O \cdots O)$ distance is around 2.56 Å (17, 18). In CsHSeO₄, with (O \cdots O) distances around 2.605 Å, they are observed at 2750, 2380, and 1600 cm⁻¹, respectively (19). In the IR and Raman spectra of the powder (20) samples of LiNH₃OHSO₄ and LiND₃ODSO₄ reported earlier, the bands at 3110, 2725, and 1935 cm⁻¹ have been assigned to the ABC triplets, but in the FTIR spectrum no band is obtained around 3110 cm⁻¹. Therefore A, B, and C bands in the FTIR and Raman spectra are reassigned by considering the O \cdots O distance (2.65 Å) in this crystal.

In the FTIR spectrum of LNHS, a broad intense band from 3150 to 2850 cm⁻¹ with a peak at 2930 cm⁻¹ is obtained. This broad band must be due to the symmetric and asymmetric N–H stretching modes as the H atoms in NH₃ group also form hydrogen bonds. Therefore the A and B bands are assigned at 2694 and 2363 cm⁻¹, respectively. The C band cannot be identified as it is masked by the NH_3 bending modes. In LNDS, the A and B bands shift to 2060 and 1750 cm⁻¹ in the IR spectrum.

In $(NH_3OH)_2SO_4$, the A and B bands are not well resolved. A broad band extending from 2800 to 2200 cm⁻¹ appears in the FTIR spectrum, with a peak at 2739 cm⁻¹ and a shoulder at 2400 cm⁻¹. The C band is also observed as a shoulder at 1684 cm⁻¹. In the Raman spectrum, the A band is observed as a weak one at 2737 cm⁻¹. In the deuterated compound $(ND_3OD)_2SO_4$, the A and B bands are observed at 2055 and 1765 cm⁻¹, respectively. However, the C band is not identified as it is masked by the strong S–O stretching modes. The $\delta(OH)$ and $\gamma(OH)$ modes are also assigned in both the LNHS and NHS (Tables 3 and 4).

The isotopic frequency ratio for A and B bands are of the order obtained for the NH₃ stretching modes indicating strong hydrogen bonds of the type O–H ··· O in the crystal. The (O ··· O) stretching mode is observed around 290 cm⁻¹ is the Raman spectra of LNHS. On deuteration this band shifts to 240 cm⁻¹. This mode is obtained as a weak band around 288 cm⁻¹ in the Raman spectra and as a shoulder around 290 cm⁻¹ in the FTIR spectrum of NHS. A medium intense band is observed around 150 cm⁻¹ in most of the crystal orientations of the Raman spectra of NHS. In the FTIR spectrum, a broad band is also obtained in this region. On deuteration the intensity of this band is considerably reduced. Hence, this band is assigned to the δ (O ··· O) mode (15).

The -OH torsional modes occur at considerably higher

frequencies, owing to the shorter O–H bond and much lower moment of inertia compared to the NH_3 group. In the inelastic neutron scattering study, –OH torsional mode appears as a broad band around 656 cm⁻¹ (5). In the FTIR spectrum of NHS, this mode is not identified as they are masked by the strong asymmetric bending vibration of SO_4^{2-} . However, in the deuterated compound a new mode is observed at 577 cm⁻¹ and is assigned to the –OD torsional modes.

External Modes (Lattice Modes)

Lattice modes are observed below 400 cm^{-1} . An unambigous assignment of bands in this region is difficult as a large number of bands due to translational and rotational modes of anions and cations appears there. The translational mode of the Li⁺ ion occurs at a higher wavenumber than those of other lattice modes in the 300–400 cm⁻¹ region (21). These bands will not be observed in NHS. Therefore the bands observed around 365 cm⁻¹ in a few crystal orientations of the Raman spectra are assigned to the translational modes of the Li⁺ cation (22). The bands around 380 cm⁻¹ are due to Li–O stretching modes (23, 24). These bands are not affected by deuteration. The Raman band around 87 cm⁻¹ in NHS remains intact on deuteration. This suggests that these bands are due to the translational modes of SO₄²⁻ (25).

Temperature Effects

Back scattered Raman spectra of single crystals of $LiNH_3OHSO_4$ and $(NH_3OH)_2SO_4$ recorded at 300 and 90 K show significant variations.

 $LiNH_3OHSO_4$. Two very intense bands are observed at 300 K around 995 and 1010 cm⁻¹ in the ν_1 mode region of the SO₄²⁻ ion. At 90 K, the band at 995 cm⁻¹ shifts to 997 cm⁻¹ but with reduced intensity while the other band around 1011 cm⁻¹ appears with an enhancement of the intensity. Both these bands become sharp at low temperature. In the asymmetric SO₄²⁻ stretching region the shoulder at 1083 cm⁻¹ disappears and a medium intense band appears around 1087 cm⁻¹ at 90 K. The intensity of the band at 1102 cm⁻¹ is enhanced and the weak bands at 1138 and 1153 cm⁻¹ are shifted to 1143 and 1157 cm⁻¹ with enhanced intensity. A new band is also observed at 1177 cm⁻¹.

The single band at 450 cm⁻¹ appearing for the ν_2 mode in the back scattered spectrum recorded at 300 K splits into two bands at 452 and 485 cm⁻¹ in the low temperature spectra. In the ν_4 mode, intensity sharing of the bands is observed. In the room temperature spectra, the band at 617 cm⁻¹ is broader and less intense than the bands at 648 cm⁻¹. At 90 K, the band at 618 cm⁻¹ becomes sharper and gains intensity, while the band at 647 cm⁻¹ becomes less intense but broad.

In the NH₃ stretching mode region bands at 90 K are

shifted to lower wavenumbers indicating the strengthening of hydrogen bonds. Splitting of bands and considerable increase in intensity of bands are also observed. These indicate Fermi resonance between NH₃ stretching modes and the combinations and overtones of NH₃ deformation vibrations (26). This implies that hydrogen bonds become stronger at low temperature.

Torsional modes of NH_3 , which were absent at the room temperature back scattered Raman spectra, appear at 430 cm⁻¹ at 90 K. This band is assigned in comparison with the corresponding bands observed in NHS. As explained in the following section of NHS, the appearance of this band indicates the strengthening of hydrogen bonds in LNHS at 90 K.

 $(NH_3OH)_2SO_4$. In the spectra recorded at room temperature, three bands are obtained for the ν_1 mode of SO₄²⁻. The band at 979 cm⁻¹ has a higher intensity than the band at 1017 cm⁻¹. At 90 K, the Raman band at 978 cm⁻¹ has lesser intensity than the band at 1017 cm⁻¹. Thus intensity sharing takes place among the bands in NHS. In the ν_3 mode region, bands observed at 90 K are at higher wavenumbers and at larger intensity than those observed at 300 K. A new band is also observed at 1102 cm⁻¹. The sharing of intensity between bands for the ν_2 mode is also obtained in NHS. Moreover, the separation between the ν_2 bands reduces to 13 cm⁻¹ at 90 K from 21 cm⁻¹ at 300 K. In the asymmetric bending mode (ν_4) region the medium intense band at 626 cm⁻¹ splits into two medium intense bands at 619 and 627 cm^{-1} and the shoulder at 638 cm^{-1} becomes well resolved to a band at 637 cm^{-1} .

As explained earlier, Jayasooriya et al. (5) observed two NH₃ modes at 380 and 425 cm⁻¹ in the IR spectrum recorded at liquid nitrogen temperature. In the present study two medium intense bands are obtained at 380 and 424 cm⁻¹ in the back scattered Raman spectrum at 90 K, confirming the observation of Jayasooriya et al. (5) of the existence of two distinct NH₃OH⁺ sites in the crystal lattice. It may be noted that these bands are not observed in the back scattered Raman spectra at room temperature even though one band each is observed in certain polarizations of the Raman spectra. At low temperature, hydrogen bonds formed by the NH₃ protons become more pronounced and the distinct nature of two NH₃OH⁺ sites becomes more clear leading to the appearance of two NH₃ torsional modes. This also confirms that the NH₃OH⁺ sites in LNHS are identical since only one band is obtained for the NH₃ torsional mode.

Bands corresponding to the $\nu(O \cdots O)$ and $\delta(O \cdots O)$ modes appear at 90 K with enhanced intensity indicating the strengthening of hydrogen bonds.

In the Raman spectrum recorded at 90 K, the OH torsional mode is observed as a very weak broad band around 656 cm^{-1} and is immersed in the background of noise.

CONCLUSIONS

The appearance of the ν_1 mode in the B_g species contributing to α_{xz} , α_{yz} , and α_{xy} polarizability tensor components, the higher wavenumber values of the ν_1 mode, the observation of the inactive ν_1 and ν_2 modes in the infrared spectrum, and the lifting of degeneracies of the ν_2 , ν_3 , and ν_4 modes suggest that the SO₄ tetrahedron in LNHS is distorted confirming the X-ray data. The large splitting observed for the ν_1 mode in NHS and its decrease in NDS indicate that the SO₄ tetrahedron is more distorted in NHS. Strong hydrogen bonds are formed between the H atoms of the NH₃ and OH groups with the oxygen atoms of the SO₄ group in both LNHS and NHS crystals. The presence of two bands for the nondegenerate symmetric bending mode (ν_2) , the broadness of the stretching modes ν_1 and ν_3 of NH₃, and the appearance of two NH₃ torsional bands at 90 K suggest the existence of two distinct HONH⁺₃ sites in the NHS crystal confirming the inelastic neutron scattering data. The two NH₃ torsional modes observed at 90 K suggest that hydrogen bonds formed by NH₃ protons become more pronounced at low temperature. In LNHS only one NH₃ torsional mode is obtained and this indicates that NH₃OH⁺ sites in it are identical. ABC bands are observed in the OH stretching region in both the crystals, confirming the presence of strong hydrogen bonds.

REFERENCES

- 1. S. Vilminot, M. R. Anderson, and I. D. Brown, *Acta Crystallogr. B* 29, 2628 (1973).
- S. Vilminot, L. Cot, C. Avinens, and M. Maurin, *Mater. Res. Bull.* 6, 189 (1971).

- 3. D. L. Frasco and E. L. Wagner, J. Chem. Phys. 30, 1124 (1959).
- 4. C. A. Van Dijk and R. G. Priest, Combustion Flame 57, 15 (1984).
- U. A. Jayasooriya, C. J. Ludman, C. I. Ratcliffe, and T. C. Waddington, J. Chem. Soc. Faraday Trans. 2, 77, 287 (1981).
- W. G. Fateley, F. R. Dollish, N. T. Mc Devitt, and F. F. Bentley, "Infrared and Raman Selection Rules for Molecular and Lattice Vibrations—Correlation Method." Wiley–Interscience, New York, 1972.
- 7. R. Bhattacharjee, J. Raman Spectrosc. 21, 491 (1990).
- G. Herzberg, "Molecular Spectra and Molecular Structure–Infrared and Raman Spectra of Polyatomic Molecules." Van Nostrand, New York, 1960.
- 9. F. D. Hardcastle and I. E. Wachs, J. Raman Spectrosc. 21, 683 (1990).
- K. Nakamoto, "Infrared Spectra of Inorganic and Coordination Compounds." Wiley–Interscience, New York, 1970.
- 11. V. Varma and C. N. R. Rao, J. Mol. Struct. 268, 1 (1992).
- A. Novak, *in* "Structure and Bonding" (J. D. Dunitz, Ed.), Vol. 119, p. 176. Berlin Heidelberg, New York, 1973.
- S. N. Vinogradov and R. H. Linnel, "Hydrogen Bonding." Van Nostrand–Reinhold, New York, 1971.
- 14. S. Bratos and H. Rataczak, J. Chem. Phys. 76, 77 (1982).
- 15. B. Marchon and A. Novak, J. Chem. Phys. 78, 2105 (1983).
- D. Hadzi and S. Bratos, *in* "The Hydrogen Bond—Recent Theory and Experiments" (P. Schuster, G. Zundel, and C. Sandorfy, Eds.), Vol. 2, p. 565. North-Holland, Amsterdam, 1976.
- 17. B. Pasquier, N. Le Calve, A. Rozycki, and A. Novak, J. Raman Spectrosc. 21, 465 (1990).
- Ph Colomban, M. Pham Thi, and A. Novak, J. Mol. Struct. 161, 1 (1987).
- 19. J. Baran, J. Mol. Struct. 162, 229 (1987).
- V. P. Mahadevan Pillai, T. Pradeep, G. Suresh, and V. U. Nayar, J. Raman Spectrosc. 23, 235 (1992).
- 21. R. Frech and E. Cazzanelli, Solid State Ionics 9/10, 95 (1983).
- 22. S. H. Brown and R. Frech, Spectrochim. Acta A 44, 1 (1988).
- G. Sekar, G. Aruldhas, and V. Ramakrishnan, J. Pure Appl. Phys. 26, 570 (1988).
- 24. J. Tarte, J. Org. Nucl. Chem. 29, 915 (1969).
- 25. V. I. Torgashev, Yu I., Yuzyuk, L. M. Rabkin, and R. M. Feosyuk, Sov. Phys. Crystallogr. 33, 82 (1988).
- 26. I. A. Oxten and O. Knop, J. Mol. Struct. 43, 17 (1978).